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Abstract

A comparative study of three approximate ‘‘explicit’’ formulae for estimating the fundamental natural
frequency of a thin cylindrical shell, and its associated fundamental modenumber is presented. The
objective is to identify the limits of the validity of each formula. The three approximate formulae
considered in this study are based on: (a) the Weingarten–Soedel approximation of the Donnell–Mushtari–
Vlasov equations, (b) the Calladine–Koga improved classical-beam-on-Winkler-foundation model, and (c)
the Timoshenko-beam-on-Pasternak-foundation analogy of the shell. Results are compared against the
analytical solutions of the equations of motion of Fl .ugge, and results obtained by a commercial finite-
element package. Tabulated results are given for length-to-radius ratios of 1, 2, 5, 10, and 20, and radius-to-
thickness ratios of 20, 50, 100, 200, and 500.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In 1888, Love [1] presented his seminal paper on the free vibration of thin shells; this paper laid
the foundation of the modern understanding of shell structures. Much effort has been made on
improving on Love’s theory, resulting in numerous theories in the literature: see Leissa [2] for a
comprehensive review on the subject. Koiter [3], however, showed that differences among these
theories are of the same order of magnitude as the error inherent in the Love–Kirchhoff
hypothesis.
Analytical analyses have been investigated by several authors. Methods of analyses vary from

the direct solution of the governing equations: see, e.g., Refs. [4,5]; the variational and energy
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methods: see, e.g., Refs. [6,7]; the finite-element method, see, e.g., Ref. [8]; and the approximate
analytical methods: see, e.g., Refs. [9–14].
Closed-form expressions based on the direct solution of the governing equations are

available in the literature only for shells having their edges constrained to remain circular
but unrestrained axially [2]. These expressions afford a valuable insight into the shell behavior
and its sensitivity to changes in any of the system parameters. Several attempts have been
devoted to derive approximate explicit expressions for the fundamental natural frequency
of cylindrical shells having other types of edge restraints: see, e.g., Ref. [2]. Among the widely
used approximation in the literature is that of Yu [9], who showed that the characteristic
equation of a cylindrical shell whose circumferential wavelength of deformation is negligibly
small compared to the axial one, is similar to the characteristic equation for the lateral
vibration of an analogous Bernoulli–Euler beam. Weingarten [10] utilized the Donnell–Mushtari–
Vlasov (DMV) theory with the contribution of in-plane inertia neglected. He showed
that by using Yu’s approximation [9], the characteristic roots of the DMV theory become
similar to those of freely vibrating Bernoulli–Euler beams. This has enabled him to derive
an approximate formula for the natural frequency of cylindrical shells. Soedel [11] used the
Galerkin method with the DMV theory, and a single set of beam functions to derive an
explicit expression for the natural frequency of cylindrical shells. By approximating a
number of insignificant terms, Soedel [11] obtained a formula identical to that given by
Weingarten [10]. Koga [13] used an asymptotic expansion of the characteristic roots of the
Budiansky equations to derive an explicit formula for the natural frequency of cylindrical
shells. His formula is identical to that given by Calladine [12], which is based on the
approximation of Yu [9].
In a previous paper [14], it was shown that for a particular regime of behavior of the

shell, where the contributions of circumferential stretching and longitudinal bending to the
strain energy are negligibly small, the Lagrangian of the shell simplifies to that of a Timoshenko
beam mounted on Pasternak foundation (TP). This has enabled in deriving explicit formulae
for the fundamental natural frequency of the shell and its associated fundamental
modenumber.
The three ‘‘approximate’’ explicit formulae mentioned above are valid only within the

limitations of their hypothesis. The limits on the validity of those formulae can be identified
through a systematic comparison against the ‘‘exact’’ solution. In the case of freely vibrating
cylindrical shells, ‘‘exact’’ solutions are available in the literature often in graphical forms.
Investigators, therefore, validate their approximate analyses through comparisons with scattered
examples in the literature, which might fall within the limits of the validity of their hypothesis: see,
e.g., Ref. [14].
The main aim of the present paper is to investigate the limits of the validity of each of the three

approximate models mentioned above. The work begins with a brief description of the equations
of motion of the shell, derived by Fl .ugge [15]. Next, the three approximate models are briefly
presented. A map identifying the different regimes of the shell behavior is then constructed.
Finally, comparative studies between the three approximate models against the exact analytical
solutions as well as the finite-element results are presented. Throughout the paper, the small-
displacement theory is assumed. The material considered is assumed homogenous, linearly elastic,
and isotropic.
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2. Methods of analysis

2.1. Exact analysis

Fig. 1 shows a thin-walled right circular cylindrical shell of axial length L; mean radius a; and
uniform wall thickness t; a list of symbols is given in the nomenclature. The present analysis is
based on the theory of Fl .ugge [15], where terms of the order Oðt=aÞ4 and higher are discarded in
comparison to unity. These equations are given by

L1ðuÞ þ L4ðvÞ þ L5ðwÞ ¼ 0; L4ðuÞ þ L2ðvÞ þ L6ðwÞ ¼ 0; L5ðuÞ þ L6ðvÞ þ L3ðwÞ ¼ 0; ð1Þ

where the partial differential operators L1; L2;y;L6 are given by
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Fig. 1. Cylindrical shell showing an x; y; z co-ordinate system and the components of small deformation in the x; y and
z directions.
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Eq. (1) must satisfy the following boundary conditions (four at each edge):
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Following Forsberg [4], the axial, u; tangential, v; and radial, w; components of deformation of a
point on the shell middle-surface can be expressed as

u ¼
X8
j¼1

Uj cosðnyÞ eajx=aeiot; v ¼
X8
j¼1

Vj sinðnyÞ eajx=aeiot; w ¼
X8
j¼1

WjcosðnyÞ eajx=aeiot; ð4Þ

where Uj; Vj; and Wj are complex constants that can be expressed in terms of Wj using Eq. (1).
Substituting Eq. (4) into Eq. (1) results in a bi-quartic algebraic equation for a2; whose roots
determine the axial dependence of the mode shapes. Satisfaction of the boundary conditions (BC),
leads to a system of eight equations in terms of eight unknown constants (referred to in this paper
as the BC equations). The frequency equation of the shell is obtained by setting to zero the
determinant of the eight-by-eight BC coefficient matrix.

2.2. Finite-element analysis

In the present study, the commercial finite-element package SAP 2000 has been utilized. The
shell was modelled by 5000 four-node quadrilateral shell elements, with 100 elements along the
circumference and 50 elements along the meridian. On the basis of a preliminary convergence
study, the above discretization is adequate for the present purposes.

2.3. Weingarten–Soedel expression

Both Weingarten [10] and Soedel [11] used the DMV equation:

Dr8w þ ðEt=a2Þw0000 þ rto2r4w ¼ 0: ð5Þ

Postulating the fundamental solution w ¼ W cosðnyÞebx=L eiot into Eq. (5) results in
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Eq. (6) is an eighth order algebraic equation for b: For H/H cylindrical shells, Eq. (6) is the
exact solution of Eq. (5), with b ¼ p corresponding to the lowest axial mode. For other types of
edge restraints, Weingarten [10] obtained the corresponding values of b from the asymptotic
solution of Eq. (6) when ðba=nLÞ51; where Eq. (6) reduces to a fourth order equation, whose
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characteristic roots are similar to those of a Bernoulli–Euler beam with analogous end restraints.
Weingarten [10] assumed that the asymptotic values of b are constant throughout the entire
domain of shell geometries.
Soedel [11] used the Galerkin method with Eq. (5), and a single set of beam functions to derive

the following expression for the natural frequency of cylindrical shells:
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For C/C, C/H, C/F, and H/H cylindrical shells, R is equal to 0.5499, 0.7467, –0.2441, and 1,
respectively. Soedel [11] assumed a single value of R ¼ 1 for all types of edge restraints, which
reduces Eq. (7) to Eq. (6) of Weingarten [10].

2.4. Long-wave (LW) and short-wave (SW) expressions [16]

For values of ðba=nLÞ51 (Yu’s LW approximation [9]), Eq. (6) reduces to
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whereas, for values of ðba=nLÞb1 (SW approximation), Eq. (6) reduces to
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Eqs. (9) and (10) are similar (in form) to the expression for the natural frequency of a Bernoulli–
Euler beam mounted on Winkler foundation. In Eq. (9), the beam and foundation actions
correspond to longitudinal stretching and circumferential bending, respectively, and the
appropriate non-dimensional frequency and length parameters are O ¼ oða2=tÞðrð1� n2Þ=EÞ1=2

and L ¼ Lt1=2=a3=2; respectively, whereas in Eq. (10), the beam and foundation actions
correspond to longitudinal bending and circumferential stretching, respectively, and the
appropriate non-dimensional frequency and length parameters are D ¼ oaðrð1� n2Þ=EÞ1=2 and
l=L/(at)1/2, respectively.
Koga [13] used an asymptotic expansion for the characteristic roots of the equations of motion

of Budiansky. He showed that the eighth order characteristic equation of the shell has two sets of
four roots. One set represents the global solution that varies gradually over the shell, whereas the
other represents the edge-zone solutions that decay out rapidly away from the edges. Moreover,
when the shell length is not much smaller than its diameter, only the first set is relevant; and the
natural frequency is given by

O2 ¼ ð1� n2Þ
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For large values of n; terms underlined in Eq. (11) are asymptotic to unity, and Eq. (11)
simplifies to Eq. (9). The (1þ n22) and (12n22)2 terms appearing in Eq. (11) are equivalent to the
contribution of circumferential displacement, respectively, to the kinetic energy, and to the change
of circumferential curvature. Calladine [12] used this argument to improve the predictions of
Eq. (9). His final formula is identical to Eq. (11).

2.5. Timoshenko-beam-on-Pasternak-foundation analogy

This model [14] is based on postulating a statically admissible straining field, obtained by
setting to zero in the kinematics relationships of Love [1], the circumferential strain and the
longitudinal change of curvature. The resulting expression for the Lagrangian of the shell is
analogous to that of a Timoshenko beam mounted on Pasternak foundation. The natural
frequency of the shell [14] is given by
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Values of b; CS; and CP are given in Table 1. Note that setting Z ¼ 1 in Eq. (12) is equivalent to
discarding the effect of rotary inertia in the analogous beam, which has a negligible effect on the
natural frequency of the shell, except for n ¼ 1: The fundamental modenumber n ¼ n� that
renders O a minimum, i.e., O ¼ O�; is given by
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Note that H/F and F/F cylindrical shells allow for inextensional modes of deformation, for which
Eq. (14) is not valid. The fundamental modenumber for those shells is n� ¼ 2:
By Rayleigh’s principle, using the exact frequency equation of the TP system results in an

upper-bound estimate for the natural frequency of the shell. Eq. (12), however, does not yield an
upper-bound estimate for the natural frequency of the shell, since it is based on an approximate
frequency expression for the TP system derived in Ref. [17].

ARTICLE IN PRESS

Table 1

Values of the constants b; CS ; and CP for various sets of end restraints [14]

C/C C/F C/H H/H H/F F/F

b 4.730 1.875 3.927 p 0 0

CS 5.014 0.471 2.759 1. 0 0

CP 1.247 0.471 1.167 1. 3=p2 0
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3. Comparative study

Fig. 2 shows a plan view of a staircase-like diagram of the circumferential modenumber n�

associated with the fundamental mode of a H/H cylindrical shell having n ¼ 0:3: Alternating
shaded/blank ‘‘treads’’, respectively, correspond to odd/even values of n�: Contours of the non-
dimensional fundamental frequency parameters O� and D� are shown in Fig. 3. The results are
based on the theory of Fl .ugge, where an explicit frequency equation for the shell is obtained by
setting to zero the determinant of the 8	 8 BC coefficient matrix (cf. Section 2.1). Lines (not
shown) having slopes –1/2 and +1/2 in the logarithmic plot correspond to the non-dimensional
length parameters l ¼ L=ðatÞ1=2 and L ¼ Lt1=2=a3=2; respectively.
Fig. 2 shows that the V-shape domains of n� consist of two practically straight bands separated

by a relatively short transition region. For large values of l ¼ L=ðatÞ1=2; towards the top-right
corner of the figure, those bands are asymptotic to lines of slope +1/2, corresponding to a
constant L ¼ Lt1=2=a3=2: The corresponding contours of O� in Fig. 3 are practically straight lines
of slope +1/2, whereas the contours of D� depict a festoon-like family of curves. Here, the shell
behavior is dominated by longitudinal stretching and circumferential bending, and the LW
approximation is valid. On the other hand, for small values of l ¼ L=ðatÞ1=2; towards the bottom-
left corner of Fig. 2, the shell behavior is predominantly axi-symmetric, and the corresponding
contours of O� in Fig. 3 are asymptotic to straight lines of slope zero, whereas the contours of D�

are practically straight lines of slope +1/2. Here, the shell behavior is dominated by
circumferential stretching and longitudinal bending, and the SW model is valid.
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Fig. 2. A plan-view of a staircase-like diagram in relation to the circumferential modenumber n� associated with the

fundamental mode of a H/H cylindrical shell (v ¼ 0:3), according to the theory of Fl .ugge. Alternating shaded/blank

‘‘treads’’ correspond to odd/even values of n�; respectively.
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It is convenient at this stage to correlate the features in Figs. 2 and 3 to the WS model, Eq. (6).
Assuming that n� is continuously variable, the value of n ¼ n� that renders the natural frequency a
minimum, i.e., O ¼ O�; is given by

n� ¼
Kb
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b=K

l

r
; ð15aÞ

which can be rearranged as

a

t


 �1=2
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ðn�Þ2

Kb
L

a

� �
þ

b
K

a

L


 �
; ð15bÞ

where K ¼ ½12ð1� n2Þ�1=4; with K ¼ 1:82 at n ¼ 0:3: The appearance of the L=a term in the
numerator and the denominator of the two terms in the right hand side of Eq. (15b) gives rise to
the V-shape curve in Fig. 2. Discarding the second term in Eq. (15b) (LW approximation) results
in n� ¼ ðKb=LÞ1=2 (¼ 2:39=L1=2 for H/H shells, n ¼ 0:3), corresponding to lines of slope +1/2 in
Fig. 2. On the other hand, discarding the first term in Eq. (15b) (SW approximation) results in
l ¼ b=K (=1.73 for H/H shells, n ¼ 0:3), corresponding to lines of slope –1/2 in Fig. 2. The
points, at which the tangents to the V-shape bands are vertical, correspond to the shell
proportions for which the contributions of in-plane shearing strain and twist to the strain energy
of the shell are maximum. These points lie on a line of slope –1/2 corresponding to l ¼ 2b=K

(=3.46 for H/H shells, n ¼ 0:3).
Fig. 4 shows the boundary curves (light solid curves) of a staircase-like diagram for n� of the

H/H shell of Fig. 2 (n ¼ 0:3), according to the theory of Fl .ugge. The shaded ‘‘tread’’ corresponds
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Fig. 3. Contours of the non-dimensional fundamental frequency parameters O� and D� for the H/H shell of Fig. 2,

according to the theory of Fl .ugge.
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to the domain of n� ¼ 5: Bold solid and broken curves correspond to the WS and CK predictions
for the boundary curves (‘‘risers’’) of the domain of n� ¼ 5; whereas open circles correspond to the
predictions of the TP model. The predictions of the WS model, Eq. (15), are indistinguishable
from those of the Fl .ugge theory. The predictions of the CK and TP models for n� are in excellent
agreement with the predictions of the Fl .ugge theory for lX40 and X6; respectively.
Fig. 5 shows contours of the percentage of relative error in the fundamental natural frequency

incurred by the WS model (solid curves), the CK model (broken curves), and the TP model (open
circles), using the theory of Fl .ugge as a reference. For axi-symmetirc modes (n� ¼ 0), neither the
CK model nor the TP model is applicable. On the other hand, the WS model reduces to the SW
model, Eq. (10), and both are in excellent agreement with the results of the Fl .ugge theory except
for shells having L=tp1: In the remainder of this paper, axi-symmetric modes of deformation will
be investigated no further.
On the other hand, for asymmetric modes (n�X1), Fig. 5 shows that the predictions of the WS

model are in excellent agreement with those of the Fl .ugge theory, except for small values of n�:
Taking the 5% contour of absolute relative error as a cut-off for its validity, the WS model is valid
for n� > 4; corresponding to Lp0:29; whereas the TP predictions are in excellent agreement with
those of the Fl .ugge theory for lX6: The CK results, Eq. (11), are in excellent agreement with
those of the Fl .ugge theory over a wide domain of geometries, but there is no pattern for which one
can set limits on the validity of the CK model, which decreases somewhat with the increase of the
shell thickness.
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Fig. 4. A plan-view of a staircase-like diagram in relation to the circumferential modenumber n� of a H/H cylindrical

shell (v ¼ 0:3). Light solid curves correspond to the boundary curves for the domains of n� according to the theory of

Fl .ugge, with the shaded ‘‘tread’’ corresponding to n� ¼ 5: Bold-solid and broken curves correspond to the WS and CK

predictions for n� ¼ 5; respectively, whereas open circles correspond to the TP model.
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Figs. (6)–(11) show comparisons between the predictions of the three approximate models
against the results of the Fl .ugge theory for C/C, C/H, and C/F cylindrical shells. Figs. 6, 8 and 10
show plan-views of staircase-like diagrams of the circumferential modenumber n� associated with
the fundamental mode of C/C, C/H, and C/F cylindrical shells, respectively (n ¼ 0:3). Alternating
shaded/blank ‘‘treads’’, respectively, correspond to odd/even values of n�; obtained from the
theory of Fl .ugge. Solid and broken curves, respectively, correspond to the WS and CK
predictions for the boundary curves of the domains of n�; whereas open circles correspond to the
TP predictions. Figs. 7, 9 and 11 show contours of the percentage of relative error in the
fundamental natural frequency incurred by the WS, CK, and TP models for C/C, C/H, and C/F
cylindrical shells, respectively, using the Fl .ugge theory as a reference. Unlike the case of H/H
shells, explicit frequency equations for C/C, C/H, and C/F shells are extremely lengthy. A simple
program is written to sweep along a predefined band for the natural frequency for a given value of
n: The desired natural frequency is the one at which the determinant of the 8	 8 BC coefficient
matrix vanishes (cf. Section 2.1). By sweeping through n; both the fundamental natural frequency
and its associated fundamental modenumber are obtained. The main difficulty of this approach is
that the 8	 8 BC coefficient matrix can become ill-conditioned due to the inclusion of hyperbolic
and trigonometric terms.
The CK predictions for the fundamental natural frequency and its associated fundamental

modenumber for C/C, C/H, and C/F shells, are in excellent agreement with the predictions of the
Fl .ugge theory (within 5% absolute percentage of relative error) for lX100; 60, and 20,
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Fig. 5. Contours of the percentage of relative error incurred by the WS (solid curves), CK (broken curves), and TP

(open circles) models for the H/H shell of Fig. 2: see text for details.
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Fig. 6. A plan-view of a staircase-like diagram in relation to the circumferential modenumber n� of a C/C cylindrical

shell (v ¼ 0:3). Alternating shaded/blank ‘‘treads’’ correspond to odd/even values of n�; according to the theory of

Fl .ugge. Solid and broken curves correspond to the WS and CK models, respectively, and open circles correspond to the

TP model.

Fig. 7. Contours of the percentage of relative error incurred by the WS (solid curves), CK (broken curves), and TP

(open circles) models for the C/C shell of Fig. 6: see text for details.
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Fig. 8. A plan-view of a staircase-like diagram in relation to the circumferential modenumber n� of a C/H cylindrical

shell (v ¼ 0:3). Alternating shaded/blank ‘‘treads’’ correspond to odd/even values of n� according to the theory of

Fl .ugge. Solid and broken curves correspond to the WS and CK models, respectively, and open circles correspond to the

TP model.

Fig. 9. Contours of the percentage of relative error incurred by the WS (solid curves), CK (broken curves), and TP

(open circles) models for the C/H shell of Fig. 8: see text for details.
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Fig. 10. A plan-view of a staircase-like diagram in relation to the circumferential modenumber n� of a C/F cylindrical

shell (v ¼ 0:3). Alternating shaded/blank ‘‘treads’’ correspond to odd/even values of n� according to the theory of

Fl .ugge. Solid and broken curves correspond to the WS and CK models, respectively, and open circles correspond to the

TP model.

Fig. 11. Contours of the percentage of relative error incurred by the WS (solid curves), CK (broken curves), and TP

(open circles) models for the C/F shell of Fig. 10: see text for details.
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respectively. The wavy nature of the contours of the percentage of relative error is mainly due to
the error in estimating the fundamental modenumber.
The TP model significantly extends the above limits on the validity of the CK model to about

lX10; 8, and 2, for C/C, C/H, and C/F shells, respectively. For C/F cylindrical shells, Fig. 11
shows that the percentage of relative error incurred by the TP model for n� ¼ 1 exceeds 5% (but
does not exceed 5.3%). This is mainly due to discarding the contribution of axial inertia to the
kinetic energy expression in Eq. (12) (via setting Z ¼ 1).
The predictions of the WS model for n� are in excellent agreement with the Fl .ugge theory,

except near the narrow transition zone separating the two practically straight bands of the V-
shape domains of n�; where the contributions of in-plane shearing strain and twist to the strain
energy are maximum. Contours of 5% absolute relative error incurred by the WS model in
predicting the fundamental natural frequency of C/C, C/H, and C/F cylindrical shells have a
similar pattern. For C/C, C/H, and C/F cylindrical shells, these patterns can be depicted by
2:35Lþ 52:0=lp1; 2:84Lþ 25:8=lp1; and 5:93Lþ 10:3=lp1; respectively. These V-shape-like
cut-offs have simple interpretations. The upper branches are a direct consequence of using the
DMV theory, which limits the application of the model to n� > 4: The lower branches are due to
approximating the true values of b; Eq. (6), by their counterparts for the Bernoulli–Euler beams,
in the narrow transition zone separating the two straight bands of the domains of n�: see
Section 2.3.
Tables 2–5 show comparisons of the values of the fundamental frequency parameter O� and the

fundamental modenumber n� (given between parentheses) for C/C, C/H, C/F, and H/H
cylindrical shells, respectively. The results of the WS, CK, and TP models are given as percentages
of relative error, using the results of the theory of Fl .ugge as a reference. The SAP 2000 results are
in excellent agreement with the results of the Fl .ugge theory. For the four cases considered, the
results of the SAP 2000 and the Fl .ugge theory differ by less than 1%. The tabulated results
confirm the earlier conclusions of this section.
As noted earlier, H/F and F/F cylindrical shells allow for inextensional modes of deformation,

and for both shells the fundamental modenumber is n� ¼ 2: For H/F cylindrical shells, the
inextensional frequency of the shell [14] is given by

O2 ¼
n4

12

ð1� n�2Þ2

ð1þ n�2Þ
1þ 6ð1� nÞ ða2=n2L2Þ

1þ ð3=ðn2 þ 1ÞÞ ða2=n2L2Þ

� 
: ð16Þ

The corresponding expressions for the WS, CK, and TP models are given by

O2
WS ¼

n4

12
; O2

CK ¼
n4

12

ð1� n�2Þ2

ð1þ n�2Þ
; O2

TP ¼
n4

12

ð1� n�2Þ2

ð1þ n�2Þ
1þ 6ð1� nÞ

a2

n2L2

� 
: ð17Þ

For n ¼ 2; corresponding to the fundamental mode, the absolute percentage of relative error
incurred by the WS model (n ¼ 0:3) is within 5% for 0:68oL=ao0:86; whereas for L=ao1=4 and
> 4; the absolute percentage of relative error is asymptotic to 49.07%. On the other hand, the
absolute percentage of relative error incurred by the CK and TP models is less than 5% for
L=aX2:8 and X1:2; respectively.
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For F/F cylindrical shells, the predictions of the WS, CK, and TP models for the inextensional
frequency of the shell are given by

O2
WS ¼

n4

12
; O2

CK ¼ O2
TP ¼

n4

12

ð1� n�2Þ2

ð1þ n�2Þ
: ð18Þ

The CK and TP expressions are identical to the inextensional frequency formula of Rayleigh (see
Refs. [2,5]). For n ¼ 2; corresponding to the fundamental mode, the WS prediction is higher than
that of Rayleigh by 49.07%.
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Table 2

Comparison of values of the fundamental frequency parameter O� ¼ oa2=tOð1� n2Þr=E and the fundamental

modenumber n� (given between parentheses) for C/C cylindrical shells

L/a a=t

20 50 100 200 500

Fl .ugge 0.6574 (1) 0.9697 (2) 1.3902 (2) 2.4288 (2) 3.5337 (3)

SAP 2000 0.6574 (1) 0.9696 (2) 1.3913 (2) 2.4327 (2) 3.5390 (3)

20 WS �60.6% (1) �38.5% (2) �26.7% (2) �18.1% (3) �11.5% (3)

CK �20.3% (1) �2.66% (2) �5.82% (2) �2.44% (3) �3.94% (3)

TP �3.42% (1) �1.34% (2) �2.83% (2) �2.19% (3) �2.76% (3)

L=ðatÞ1=2 89.44 141.4 200 282.8 447.2

Fl .ugge 1.1582 (2) 2.2366 (2) 3.0661 (3) 4.7741 (3) 7.5424 (4)

SAP 2000 1.1565 (2) 2.2363 (2) 3.0667 (3) 4.7781 (3) 7.5210 (4)

10 WS �36.7% (2) �25.4% (2) �15.1% (3) �11.8% (3) �7.06% (4)

CK �9.26% (2) �11.2% (3) �4.99% (3) �4.75% (4) �5.78% (4)

TP �0.90% (2) �2.44% (2) �1.57% (3) �2.87% (3) �2.80% (4)

L=ðatÞ1=2 44.72 70.71 100 141.4 223.6

Fl .ugge 2.7120 (2) 4.3080 (3) 6.2774 (4) 9.2569 (5) 14.9318 (6)

SAP 2000 2.7105 (2) 4.3081 (3) 6.2788 (4) 9.2606 (5) 14.9442 (6)

5 WS �23.1% (3) �20.1% (3) �11.9% (4) �7.68% (5) �5.31% (6)

CK �6.61% (3) �16.1% (4) �9.32% (4) �5.54% (5) �5.82% (6)

TP +0.10% (2) �0.73% (3) �0.96% (4) �1.12% (5) �1.82% (6)

L=ðatÞ1=2 22.36 35.35 50 70.71 111.8

Fl .ugge 6.2404 (3) 10.4686 (5) 15.3271 (6) 22.4040 (7) 36.7629 (9)

SAP 2000 6.2376 (3) 10.4723 (5) 15.3450 (6) 22.4478 (7) 36.8545 (9)

2 WS �27.5% (4) �18.6% (5) �14.6% (6) �12.1% (7) �7.69% (10)

CK �27.9% (4) �20.1% (6) �16.0% (7) �11.7% (8) �8.23% (10)

TP +4.77% (3) +2.61% (5) +1.11% (6) +0.05% (7) 0.85% (9)

L=ðatÞ1=2 8.944 14.14 20 28.28 44.72

Fl .ugge 12.4779 (4) 19.9836 (6) 29.1461 (7) 42.6632 (9) 70.5857 (12)

SAP 2000 12.4650 (4) 19.9954 (6) 29.2385 (7) 42.8671 (9) 71.0883 (12)

1 WS �25.8% (4) �24.4% (6) �20.4% (8) �16.4% (10) �11.2% (13)

CK �26.6% (6) �25.3% (8) �22.8% (9) �18.3% (11) �13.3% (14)

TP +15.4% (4) +8.07% (6) +4.17% (7) +2.31% (9) +0.64% (12)

L=ðatÞ1=2 4.472 7.071 10 14.14 22.36
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4. Conclusions

On the basis of the present study, the following conclusions may be drawn:

1. A comparative study has been conducted between three approximate explicit formulae for
predicting the fundamental natural frequency of vibration of a thin cylindrical shell, and its
associated fundamental modenumber, taking the results of both the theory of Fl .ugge, and the
finite-element package SAP 2000, as references.
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Table 3

Comparison of values of the fundamental frequency parameter O� ¼ oa2=tOð1� n2Þr=E and the fundamental

modenumber n� (given between parentheses) for C/H cylindrical shells

L/a a=t

20 50 100 200 500

Fl .ugge 0.4792 (1) 0.8779 (2) 1.1215 (2) 1.7903 (2) 2.9189 (3)

SAP 2000 0.4791 (1) 0.8777 (2) 1.1217 (2) 1.7915 (2) 2.9208 (3)

20 WS �60.5% (1) �42.6% (2) �31.9% (2) �20.8% (2) �13.3% (3)

CK �13.8% (1) �0.97% (2) �3.33% (2) �5.56% (2) �2.36% (3)

TP �4.09% (1) �0.81% (2) �2.23% (2) �3.60% (2) �1.98% (3)

L=ðatÞ1=2 89.44 141.4 200 282.8 447.2

Fl .ugge 1.0035 (2) 1.7193 (2) 2.6766 (3) 3.7275 (3) 6.0847 (4)

SAP 2000 1.0017 (2) 1.7185 (2) 2.6766 (3) 3.7287 (3) 6.0883 (4)

10 WS �38.8% (2) �24.4% (2) �15.5% (3) �11.6% (3) �7.10% (4)

CK �3.34% (2) �9.92% (2) �1.92% (3) �5.16% (3) �3.29% (4)

TP �0.75% (2) �2.60% (2) �1.06% (3) �2.55% (3) �2.19% (4)

L=ðatÞ1=2 44.72 70.71 100 141.4 223.6

Fl .ugge 2.2209 (2) 3.5742 (3) 5.4440 (4) 7.9087 (4) 12.7506 (6)

SAP 2000 2.2180 (2) 3.5728 (3) 5.4440 (4) 7.9111 (4) 12.7560 (6)

5 WS �29.5% (2) �15.6% (3) �9.52% (4) �8.14% (4) �4.13% (6)

CK �14.7% (3) �9.67% (3) �3.31% (4) �5.46% (5) �2.47% (6)

TP �0.43% (2) �0.86% (3) �0.72% (4) �2.09% (4) �1.29% (6)

L=ðatÞ1=2 22.36 35.35 50 70.71 111.8

Fl .ugge 5.5090 (3) 9.3071 (4) 13.5649 (5) 19.4263 (7) 31.4708 (9)

SAP 2000 5.5023 (3) 9.3115 (4) 13.5792 (5) 19.4422 (7) 31.5047 (9)

2 WS �23.8% (3) �12.7% (5) �8.72% (6) �6.30% (7) �3.91% (9)

CK �14.1% (4) �9.20% (5) �7.05% (6) �6.84% (7) �4.72% (9)

TP +4.23% (3) +1.69% (4) +0.51% (5) +0.01% (7) –0.68% (9)

L=ðatÞ1=2 8.944 14.14 20 28.28 44.72

Fl .ugge 11.0834 (4) 18.0504 (6) 25.9484 (7) 37.6447 (9) 61.3860 (12)

SAP 2000 11.0689 (4) 18.0502 (6) 25.9961 (7) 37.7384 (9) 61.5871 (12)

1 WS �17.6% (4) �14.2% (6) �13.5% (7) �9.70% (9) �6.15% (12)

CK �17.9% (6) �15.0% (7) �14.6% (9) �11.1% (10) �8.14% (13)

TP +12.0% (4) +6.48% (6) +3.66% (7) 1.97% (9) +0.51% (12)

L=ðatÞ1=2 4.472 7.071 10 14.14 22.36
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2. For axi-symmetirc modes (n ¼ 0), neither the CK formula nor the TP formula is valid. The WS
formula reduces to the SW formula, and both are valid for l ¼ b=K :

3. The WS formula is in excellent agreement with the Fl .ugge theory (within 5% absolute relative
error), for asymmetric modes of deformation (n� > 0), provided that 2:35Lþ 52:0=lp1;
2:84Lþ 25:8=lp1; 5:93Lþ 10:3=lp1; and 3:46Lp1; for C/C, C/H, C/F, and H/H cylindrical
shells, respectively.

4. The CK formula is in excellent agreement with the Fl .ugge theory (within 5% absolute relative
error) for asymmetric modes of deformation (n� > 0), provided that, lX100; 60, and 20, for
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Table 4

Comparison of values of the fundamental frequency parameter O� ¼ oa2=tOð1� n2Þr=E and the fundamental

modenumber n� (given between parentheses) for C/F cylindrical shells

L/a a=t

20 50 100 200 500

Fl .ugge 0.1167 (1) 0.2915 (1) 0.5828 (1) 0.8609 (2) 1.2140 (2)

SAP 2000 0.1166 (1) 0.2914 (1) 0.5828 (1) 0.8609 (2) 1.2144 (2)

20 WS �187% (1) �74.1% (1) �51.1% (1) �42.9% (2) �28.5% (2)

CK �6.51% (1) �6.62% (1) �6.64% (1) �0.89% (2) �3.07% (2)

TP �4.80% (1) �4.87% (1) �4.92% (1) �0.98% (2) �2.89% (2)

L=ðatÞ1=2 89.44 141.4 200 282.8 447.2

Fl .ugge 0.4448 (1) 0.8619 (2) 1.0736 (2) 1.6699 (2) 2.8123 (3)

SAP 2000 0.4444 (1) 0.8619 (2) 1.0734 (2) 1.6697 (2) 2.8129 (3)

10 WS �60.4% (1) �43.5% (2) �33.3% (2) �21.6% (2) �13.8% (3)

CK �11.8% (1) �0.78% (2) �2.80% (2) �4.96% (2) �2.03% (3)

TP �5.04% (1) �1.10% (2) �2.38% (2) �3.77% (2) �1.94% (3)

L=ðatÞ1=2 44.72 70.71 100 141.4 223.6

Fl .ugge 0.9747 (2) 1.6214 (2) 2.6074 (3) 3.5347 (3) 5.8248 (4)

SAP 2000 0.9733 (2) 1.6202 (2) 2.6078 (3) 3.5346 (3) 5.8263 (4)

5 WS �39.5% (2) �24.2% (2) �15.8% (3) �11.7% (3) �7.19% (4)

CK �2.37% (2) �8.10% (2) �1.45% (3) �4.30% (3) �2.76% (4)

TP �1.99% (2) �3.60% (2) �1.57% (3) �2.94% (3) �2.33% (4)

L=ðatÞ1=2 22.36 35.35 50 70.71 111.8

Fl .ugge 2.7996 (3) 4.4747 (3) 6.3852 (4) 9.3322 (5) 14.9883 (6)

SAP 2000 2.7956 (3) 4.4734 (3) 6.3859 (4) 9.3354 (5) 14.9954 (6)

2 WS �18.5% (3) �14.3% (3) �8.98% (4) �5.97% (5) �3.91% (6)

CK �2.50% (3) �11.2% (4) �6.28% (4) �3.73% (5) �4.29% (6)

TP �2.14% (3) �3.25% (3) �2.66% (4) �2.29% (5) �2.62% (6)

L=ðatÞ1=2 8.944 14.14 20 28.28 44.72

Fl .ugge 5.4202 (3) 9.0514 (4) 13.1031 (5) 18.8410 (7) 30.3345 (8)

SAP 2000 5.4147 (3) 9.0549 (4) 13.1149 (5) 18.8568 (7) 30.3815 (8)

1 WS �19.3% (3) �11.8% (5) �8.51% (6) �5.22% (7) �3.67% (9)

CK �10.4% (4) �6.94% (5) �5.79% (6) �4.82% (7) �3.84% (9)

TP �1.83% (3) �3.00% (4) �3.07% (5) �2.36% (7) �2.61% (9)

L=ðatÞ1=2 4.472 7.071 10 14.14 22.36
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C/C, C/H, and C/F cylindrical shells, respectively. For H/H shells, there appears to be no
pattern to which one can set limits on the CK formula.

5. The TP formula is in excellent agreement with the Fl .ugge theory (within 5% absolute relative
error) for asymmetric modes of deformation (n� > 0), provided that, lX10; 8, 6, and 2, for C/C,
C/H, H/H, and C/F cylindrical shells, respectively.

6. For H/F and F/F cylindrical shells, the WS formula is not recommended for estimating the
inextensional natural frequency of the shell, corresponding to n ¼ 2: The CK and TP
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Table 5

Comparison of values of the fundamental frequency parameter O� ¼ oa2=tOð1� n2Þr=E and the fundamental

modenumber n� (given between parentheses) for H/H cylindrical shells

L/a a=t

20 50 100 200 500

Fl .ugge 0.3221 (1) 0.8051 (1) 0.9382 (2) 1.3036 (2) 2.5209 (3)

SAP 2000 0.3220 (1) 0.8049 (1) 0.9380 (2) 1.3035 (2) 2.5216 (3)

20 WS �69.6% (1) �47.3% (1) �38.6% (2) �26.5% (2) �15.6% (3)

CK �8.32% (1) �2.14% (2) �1.36% (2) �3.42% (2) �1.07% (3)

TP �4.72% (1) �2.42% (2) �1.36% (2) �2.97% (2) �1.11% (3)

L=ðatÞ1=2 89.44 141.4 200 282.8 447.2

Fl .ugge 0.8926 (2) 1.2950 (2) 2.1957 (2) 2.9581 (3) 5.0895 (4)

SAP 2000 0.8909 (2) 1.2940 (2) 2.1952 (2) 2.9582 (3) 5.0908 (4)

10 WS �42.2% (2) �27.3% (2) �17.7% (2) �13.0% (3) �7.88% (4)

CK +0.12% (2) �4.11% (2) �6.52% (2) �2.14% (3) �1.34% (4)

TP �0.37% (2) �2.39% (2) �3.56% (2) �1.82% (3) �1.33% (4)

L=ðatÞ1=2 44.72 70.71 100 141.4 223.6

Fl .ugge 1.7423 (2) 2.9693 (3) 4.4274 (3) 6.1915 (4) 10.0209 (5)

SAP 2000 1.7384 (2) 2.9672 (3) 4.4266 (3) 6.1920 (4) 10.0234 (5)

5 WS �22.4% (2) �13.6% (3) �9.31% (3) �6.53% (4) �4.05% (5)

CK �10.7% (2) �1.76% (3) �6.22% (3) �2.87% (4) �2.80% (5)

TP �1.29% (2) �0.71% (3) �2.22% (3) �1.72% (4) �2.03% (5)

L=ðatÞ1=2 22.36 35.35 50 70.71 111.8

Fl .ugge 4.7968 (3) 7.8453 (4) 11.2271 (5) 16.0856 (6) 25.6822 (8)

SAP 2000 4.7860 (3) 7.8413 (4) 11.2272 (5) 16.0912 (6) 25.6942 (8)

2 WS �9.94% (3) �5.90% (4) �3.99% (5) �2.73% (6) �1.66% (8)

CK �7.52% (4) �6.32% (5) �5.32% (5) �4.42% (6) �2.39% (8)

TP +2.63% (3) +1.02% (4) +0.18% (5) �0.58% (6) �1.00% (8)

L=ðatÞ1=2 8.944 14.14 20 28.28 44.72

Fl .ugge 9.9245 (4) 16.2594 (6) 22.8521 (7) 32.7534 (8) 51.7147 (11)

SAP 2000 9.9065 (4) 16.2453 (6) 22.8544 (7) 32.7937 (8) 51.7631 (11)

1 WS �5.08% (4) �3.04% (6) �2.12% (7) �1.47% (8) �0.87% (11)

CK �3.79% (5) �3.31% (6) �3.54% (8) �1.88% (9) �3.05% (11)

TP +7.24% (4) +4.73% (6) +2.78% (7) +1.25% (8) +0.20% (11)

L=ðatÞ1=2 4.472 7.071 10 14.14 22.36
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predictions for F/F cylindrical shells are identical to the analytical solution of Rayleigh. On the
other hand, for H/F cylindrical shells, the CK and TP predictions are in excellent agreement
with the analytical solution (within 5% absolute relative error) for L=aX2:8 and X1:2;
respectively.

Appendix A. Nomenclature

a mean radius of cylindrical shell
CS; CP constants given in Table 1
D flexural rigidity (¼ Et3=12ð1� n2Þ)
E Young’s modulus of elasticity
G shear modulus of elasticity (¼ E=2ð1þ nÞ)
I second moment of area of cross-section
K ¼ ð12ð1� n2ÞÞ1=4

L axial length of shell
L1;y;L6 partial differential operators defined by Eq. (2)
n circumferential modenumber
n� circumferential modenumber associated with the fundamental mode
t thickness of shell
u; v; w axial, circumferential and radial components of displacement, respectively
U ; V ; W y-independent complex amplitudes of the displacement components, Eq. (4)
x axial-length co-ordinate of shell
y characteristic Bernoulli–Euler beam functions
z normal-length co-ordinate of shell (positive outwards)
BC boundary conditions
C clamped edge of shell (held circular and plane)
CK Calladine–Koga formula for the natural frequency of shell, Eq. (11)
F free edge of shell
FE finite-element method
H freely supported edge of shell (held circular but unrestrained axially)
LW long wave
SW short wave
TP Timoshenko beam mounted on Pasternak foundation
WS Weingarten–Soedel formula for natural frequency of shell, Eq. (6)
b dimensionless frequency parameter for Bernoulli–Euler beam (¼ oL2OrA=EI)
l non-dimensional length of shell (¼ L=ðatÞ1=2)
L non-dimensional length of shell (¼ Lt1=2=a3=2)
D non-dimensional frequency parameter (¼ oaðrð1� n2Þ=EÞ1=2)
O non-dimensional frequency parameter (¼ oða2=tÞðrð1� n2Þ=EÞ1=2)
D� ‘‘fundamental’’ non-dimensional frequency parameter
O� ‘‘fundamental’’ non-dimensional frequency parameter
n Poisson’s ratio
y circumferential co-ordinate (in radians)
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r mass density
t time
o circular natural frequency of vibration
r4(..) bi-harmonic operator, ¼ @4=@x4ðyÞ þ 2@4=@x2@y2ðyÞ þ @4=@y4ðyÞ; r8 � r4ðr4Þ
(y)0 dðyÞ=dx
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